Internal
problem
ID
[7632]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
2.
Linear
equations
with
constant
coefficients.
Page
69
Problem
number
:
1(d)
Date
solved
:
Wednesday, March 05, 2025 at 04:48:50 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+2*I*diff(y(x),x)+y(x) = x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+2*I*D[y[x],x]+y[x]==x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x + complex(0, 2)*Derivative(y(x), x) + y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)