50.13.4 problem 4

Internal problem ID [8019]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number : 4
Date solved : Monday, January 27, 2025 at 03:36:52 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 37

dsolve(diff(y(x),x$3)+y(x)=0,y(x), singsol=all)
 
\[ y = \left (c_{2} {\mathrm e}^{\frac {3 x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )+c_3 \,{\mathrm e}^{\frac {3 x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )+c_{1} \right ) {\mathrm e}^{-x} \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 56

DSolve[D[y[x],{x,3}]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-x} \left (c_3 e^{3 x/2} \cos \left (\frac {\sqrt {3} x}{2}\right )+c_2 e^{3 x/2} \sin \left (\frac {\sqrt {3} x}{2}\right )+c_1\right ) \]