50.13.6 problem 6

Internal problem ID [8021]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number : 6
Date solved : Monday, January 27, 2025 at 03:36:53 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 24

dsolve(diff(y(x),x$4)+4*diff(y(x),x$3)+6*diff(y(x),x$2)+4*diff(y(x),x)+y(x)=0,y(x), singsol=all)
 
\[ y = {\mathrm e}^{-x} \left (x^{3} c_4 +c_3 \,x^{2}+c_{2} x +c_{1} \right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

DSolve[D[y[x],{x,4}]+4*D[y[x],{x,3}]+6*D[y[x],{x,2}]+4*D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-x} (x (x (c_4 x+c_3)+c_2)+c_1) \]