50.13.21 problem 19(b)

Internal problem ID [8036]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number : 19(b)
Date solved : Monday, January 27, 2025 at 03:37:00 PM
CAS classification : [[_3rd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y&=0 \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 20

dsolve(x^3*diff(y(x),x$3)+x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)
 
\[ y = \frac {c_{2} x^{3}+c_3 \,x^{2}+c_{1}}{x} \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

DSolve[x^3*D[y[x],{x,3}]+x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_3 x^2+c_2 x+\frac {c_1}{x} \]