Internal
problem
ID
[7664]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
2.
Linear
equations
with
constant
coefficients.
Page
89
Problem
number
:
1(f)
Date
solved
:
Wednesday, March 05, 2025 at 04:49:52 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-2*I*diff(y(x),x)-y(x) = exp(I*x)-2*exp(-I*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2*I*D[y[x],x]-y[x]==Exp[I*x]-2*Exp[-I*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(complex(0, -2)*Derivative(y(x), x) - y(x) + 2*exp(x*complex(0, -1)) - exp(x*complex(0, 1)) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)