49.11.5 problem 1(e)

Internal problem ID [7669]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 2. Linear equations with constant coefficients. Page 93
Problem number : 1(e)
Date solved : Wednesday, March 05, 2025 at 04:50:06 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+9 y&=x^{2} {\mathrm e}^{3 x} \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 28
ode:=diff(diff(y(x),x),x)+9*y(x) = x^2*exp(3*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (x -\frac {1}{3}\right )^{2} {\mathrm e}^{3 x}}{18}+\cos \left (3 x \right ) c_{1} +\sin \left (3 x \right ) c_{2} \]
Mathematica. Time used: 0.022 (sec). Leaf size: 36
ode=D[y[x],{x,2}]+9*y[x]==x^2*Exp[3*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{162} e^{3 x} (1-3 x)^2+c_1 \cos (3 x)+c_2 \sin (3 x) \]
Sympy. Time used: 0.208 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*exp(3*x) + 9*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (3 x \right )} + C_{2} \cos {\left (3 x \right )} + \frac {x^{2} e^{3 x}}{18} - \frac {x e^{3 x}}{27} + \frac {e^{3 x}}{162} \]