Internal
problem
ID
[7669]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
2.
Linear
equations
with
constant
coefficients.
Page
93
Problem
number
:
1(e)
Date
solved
:
Wednesday, March 05, 2025 at 04:50:06 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+9*y(x) = x^2*exp(3*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+9*y[x]==x^2*Exp[3*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*exp(3*x) + 9*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)