49.13.2 problem 1(b)

Internal problem ID [7678]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 3. Linear equations with variable coefficients. Page 121
Problem number : 1(b)
Date solved : Wednesday, March 05, 2025 at 04:50:24 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }-x y^{\prime }+y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 12
ode:=x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left (c_{2} \ln \left (x \right )+c_{1} \right ) \]
Mathematica. Time used: 0.018 (sec). Leaf size: 15
ode=x^2*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x (c_2 \log (x)+c_1) \]
Sympy. Time used: 0.162 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} + C_{2} \log {\left (x \right )}\right ) \]