Internal
problem
ID
[7680]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
3.
Linear
equations
with
variable
coefficients.
Page
121
Problem
number
:
1(d)
Date
solved
:
Wednesday, March 05, 2025 at 04:50:26 AM
CAS
classification
:
[_Laguerre]
Using reduction of order method given that one solution is
ode:=x*diff(diff(y(x),x),x)-(1+x)*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]-(x+1)*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 2)) - (x + 1)*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False