49.13.4 problem 1(d)

Internal problem ID [7680]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 3. Linear equations with variable coefficients. Page 121
Problem number : 1(d)
Date solved : Wednesday, March 05, 2025 at 04:50:26 AM
CAS classification : [_Laguerre]

\begin{align*} x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{x} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 13
ode:=x*diff(diff(y(x),x),x)-(1+x)*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} c_{2} +c_{1} x +c_{1} \]
Mathematica. Time used: 0.032 (sec). Leaf size: 19
ode=x*D[y[x],{x,2}]-(x+1)*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^x-c_2 (x+1) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) - (x + 1)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False