49.14.1 problem 1

Internal problem ID [7684]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 3. Linear equations with variable coefficients. Page 124
Problem number : 1
Date solved : Wednesday, March 05, 2025 at 04:50:28 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x^{2} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 15
ode:=x^2*diff(diff(y(x),x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_{2} x^{3}+c_{1}}{x} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 18
ode=x^2*D[y[x],{x,2}]-2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 x^3+c_1}{x} \]
Sympy. Time used: 0.073 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + C_{2} x^{2} \]