49.15.9 problem 5

Internal problem ID [7695]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 3. Linear equations with variable coefficients. Page 130
Problem number : 5
Date solved : Thursday, March 13, 2025 at 06:04:05 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }-x y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=0\\ y^{\prime \prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.018 (sec). Leaf size: 14
ode:=diff(diff(diff(y(x),x),x),x)-x*y(x) = 0; 
ic:=y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \operatorname {hypergeom}\left (\left [\right ], \left [\frac {1}{2}, \frac {3}{4}\right ], \frac {x^{4}}{64}\right ) \]
Mathematica. Time used: 0.012 (sec). Leaf size: 21
ode=D[y[x],{x,3}]-x*y[x]==0; 
ic={y[0]==1,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \, _0F_2\left (;\frac {1}{2},\frac {3}{4};\frac {x^4}{64}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x) + Derivative(y(x), (x, 3)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0, Subs(Derivative(y(x), (x, 2)), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve -x*y(x) + Derivative(y(x), (x, 3))