50.17.22 problem 5 solved using series

Internal problem ID [8093]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number : 5 solved using series
Date solved : Monday, January 27, 2025 at 03:43:37 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }&=x -y \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 0.000 (sec). Leaf size: 20

Order:=8; 
dsolve([diff(y(x),x)=x-y(x),y(0) = 0],y(x),type='series',x=0);
 
\[ y = \frac {1}{2} x^{2}-\frac {1}{6} x^{3}+\frac {1}{24} x^{4}-\frac {1}{120} x^{5}+\frac {1}{720} x^{6}-\frac {1}{5040} x^{7}+\operatorname {O}\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 46

AsymptoticDSolveValue[{D[y[x],x]==x-y[x],{y[0]==0}},y[x],{x,0,"8"-1}]
 
\[ y(x)\to -\frac {x^7}{5040}+\frac {x^6}{720}-\frac {x^5}{120}+\frac {x^4}{24}-\frac {x^3}{6}+\frac {x^2}{2} \]