50.18.1 problem 1(a)

Internal problem ID [8095]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169
Problem number : 1(a)
Date solved : Monday, January 27, 2025 at 03:43:40 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} y^{\prime \prime }+x y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 49

Order:=8; 
dsolve(diff(y(x),x$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}+\frac {1}{8} x^{4}-\frac {1}{48} x^{6}\right ) y \left (0\right )+\left (x -\frac {1}{3} x^{3}+\frac {1}{15} x^{5}-\frac {1}{105} x^{7}\right ) y^{\prime }\left (0\right )+O\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[D[y[x],{x,2}]+x*D[y[x],x]+y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_2 \left (-\frac {x^7}{105}+\frac {x^5}{15}-\frac {x^3}{3}+x\right )+c_1 \left (-\frac {x^6}{48}+\frac {x^4}{8}-\frac {x^2}{2}+1\right ) \]