49.17.6 problem 1(f)
Internal
problem
ID
[7713]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
4.
Linear
equations
with
Regular
Singular
Points.
Page
154
Problem
number
:
1(f)
Date
solved
:
Wednesday, March 05, 2025 at 04:51:08 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
\begin{align*} \left (x^{2}+x -2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }+\left (x -1\right ) y&=0 \end{align*}
Using series method with expansion around
\begin{align*} -2 \end{align*}
✓ Maple. Time used: 0.023 (sec). Leaf size: 60
Order:=8;
ode:=(x^2+x-2)^2*diff(diff(y(x),x),x)+3*(x+2)*diff(y(x),x)+(x-1)*y(x) = 0;
dsolve(ode,y(x),type='series',x=-2);
\[
y = \frac {c_{1} \left (1-\frac {5}{9} \left (x +2\right )+\frac {23}{324} \left (x +2\right )^{2}+\frac {271}{43740} \left (x +2\right )^{3}+\frac {10517}{12597120} \left (x +2\right )^{4}+\frac {778801}{6235574400} \left (x +2\right )^{5}+\frac {16965493}{942818849280} \left (x +2\right )^{6}+\frac {899971067}{458981357990400} \left (x +2\right )^{7}+\operatorname {O}\left (\left (x +2\right )^{8}\right )\right )+c_{2} \left (x +2\right )^{{4}/{3}} \left (1-\frac {1}{21} \left (x +2\right )-\frac {11}{1260} \left (x +2\right )^{2}-\frac {53}{29484} \left (x +2\right )^{3}-\frac {11093}{28304640} \left (x +2\right )^{4}-\frac {709507}{8066822400} \left (x +2\right )^{5}-\frac {5797423}{290405606400} \left (x +2\right )^{6}-\frac {52991201}{11727918720000} \left (x +2\right )^{7}+\operatorname {O}\left (\left (x +2\right )^{8}\right )\right )}{\left (x +2\right )^{{1}/{3}}}
\]
✓ Mathematica. Time used: 0.022 (sec). Leaf size: 148
ode=(x^2+x-2)^2*D[y[x],{x,2}]+3*(x+2)*D[y[x],x]+(x-1)*y[x]==0;
ic={};
AsymptoticDSolveValue[{ode,ic},y[x],{x,-2,7}]
\[
y(x)\to c_1 (x+2) \left (-\frac {52991201 (x+2)^7}{11727918720000}-\frac {5797423 (x+2)^6}{290405606400}-\frac {709507 (x+2)^5}{8066822400}-\frac {11093 (x+2)^4}{28304640}-\frac {53 (x+2)^3}{29484}-\frac {11 (x+2)^2}{1260}+\frac {1}{21} (-x-2)+1\right )+\frac {c_2 \left (\frac {899971067 (x+2)^7}{458981357990400}+\frac {16965493 (x+2)^6}{942818849280}+\frac {778801 (x+2)^5}{6235574400}+\frac {10517 (x+2)^4}{12597120}+\frac {271 (x+2)^3}{43740}+\frac {23}{324} (x+2)^2-\frac {5 (x+2)}{9}+1\right )}{\sqrt [3]{x+2}}
\]
✓ Sympy. Time used: 65.500 (sec). Leaf size: 4605
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq((x - 1)*y(x) + (3*x + 6)*Derivative(y(x), x) + (x**2 + x - 2)**2*Derivative(y(x), (x, 2)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=-2,n=8)
\[
\text {Latex too large to display}
\]