50.19.9 problem 2(e)

Internal problem ID [8117]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number : 2(e)
Date solved : Monday, January 27, 2025 at 03:44:07 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{4} y^{\prime \prime }+\sin \left (x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Order:=8; 
dsolve(x^4*diff(y(x),x$2)+sin(x)*y(x)=0,y(x),type='series',x=0);
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.119 (sec). Leaf size: 294

AsymptoticDSolveValue[x^4*D[y[x],{x,2}]+Sin[x]*y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_1 e^{-\frac {2 i}{\sqrt {x}}} x^{3/4} \left (\frac {16487484152477478659746223 i x^{13/2}}{2773583263632691770163200}-\frac {4594934148364735183693 i x^{11/2}}{6320013947079701299200}+\frac {12579783586699513 i x^{9/2}}{96185277197844480}-\frac {21896783401 i x^{7/2}}{579820584960}+\frac {856783 i x^{5/2}}{41943040}-\frac {3151 i x^{3/2}}{73728}-\frac {3986263268940827572255963529 x^7}{207094217017907652172185600}+\frac {21730712888356628741772337 x^6}{10920984100553723845017600}-\frac {1500040357444099007 x^5}{5129881450551705600}+\frac {4885269094757 x^4}{74217034874880}-\frac {2835642457 x^3}{108716359680}+\frac {11659 x^2}{524288}+\frac {15 x}{512}-\frac {3 i \sqrt {x}}{16}+1\right )+c_2 e^{\frac {2 i}{\sqrt {x}}} x^{3/4} \left (-\frac {16487484152477478659746223 i x^{13/2}}{2773583263632691770163200}+\frac {4594934148364735183693 i x^{11/2}}{6320013947079701299200}-\frac {12579783586699513 i x^{9/2}}{96185277197844480}+\frac {21896783401 i x^{7/2}}{579820584960}-\frac {856783 i x^{5/2}}{41943040}+\frac {3151 i x^{3/2}}{73728}-\frac {3986263268940827572255963529 x^7}{207094217017907652172185600}+\frac {21730712888356628741772337 x^6}{10920984100553723845017600}-\frac {1500040357444099007 x^5}{5129881450551705600}+\frac {4885269094757 x^4}{74217034874880}-\frac {2835642457 x^3}{108716359680}+\frac {11659 x^2}{524288}+\frac {15 x}{512}+\frac {3 i \sqrt {x}}{16}+1\right ) \]