50.19.14 problem 4(a)

Internal problem ID [8122]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number : 4(a)
Date solved : Monday, January 27, 2025 at 03:44:13 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 4 x y^{\prime \prime }+3 y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 52

Order:=8; 
dsolve(4*x*diff(y(x),x$2)+3*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y = c_{1} x^{{1}/{4}} \left (1-\frac {1}{5} x +\frac {1}{90} x^{2}-\frac {1}{3510} x^{3}+\frac {1}{238680} x^{4}-\frac {1}{25061400} x^{5}+\frac {1}{3759210000} x^{6}-\frac {1}{763119630000} x^{7}+\operatorname {O}\left (x^{8}\right )\right )+c_{2} \left (1-\frac {1}{3} x +\frac {1}{42} x^{2}-\frac {1}{1386} x^{3}+\frac {1}{83160} x^{4}-\frac {1}{7900200} x^{5}+\frac {1}{1090227600} x^{6}-\frac {1}{206053016400} x^{7}+\operatorname {O}\left (x^{8}\right )\right ) \]

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 113

AsymptoticDSolveValue[4*x*D[y[x],{x,2}]+3*D[y[x],x]+y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_1 \sqrt [4]{x} \left (-\frac {x^7}{763119630000}+\frac {x^6}{3759210000}-\frac {x^5}{25061400}+\frac {x^4}{238680}-\frac {x^3}{3510}+\frac {x^2}{90}-\frac {x}{5}+1\right )+c_2 \left (-\frac {x^7}{206053016400}+\frac {x^6}{1090227600}-\frac {x^5}{7900200}+\frac {x^4}{83160}-\frac {x^3}{1386}+\frac {x^2}{42}-\frac {x}{3}+1\right ) \]