Internal
problem
ID
[7740]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
5.
Existence
and
uniqueness
of
solutions
to
first
order
equations.
Page
190
Problem
number
:
4(b)
Date
solved
:
Wednesday, March 05, 2025 at 04:52:35 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=diff(y(x),x) = y(x)^2/(x*y(x)+x^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2/(x*y[x]+x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - y(x)**2/(x**2 + x*y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)