Internal
problem
ID
[7746]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
5.
Existence
and
uniqueness
of
solutions
to
first
order
equations.
Page
190
Problem
number
:
6(b)
Date
solved
:
Wednesday, March 05, 2025 at 04:54:30 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, _Riccati]
ode:=diff(y(x),x) = 1/2*(x+y(x)-1)^2/(x+2)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==1/2*((x+y[x]-1)/(x+2))^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x + y(x) - 1)**2/(2*(x + 2)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)