50.21.1 problem 2(a)

Internal problem ID [8138]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Section 4.6. Gauss Hypergeometric Equation. Page 187
Problem number : 2(a)
Date solved : Monday, January 27, 2025 at 03:44:34 PM
CAS classification : [_Jacobi]

\begin{align*} x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.019 (sec). Leaf size: 40

Order:=8; 
dsolve(x*(1-x)*diff(y(x),x$2)+(3/2-2*x)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_{1} \left (1-\frac {9}{2} x +\frac {15}{8} x^{2}+\frac {7}{16} x^{3}+\frac {27}{128} x^{4}+\frac {33}{256} x^{5}+\frac {91}{1024} x^{6}+\frac {135}{2048} x^{7}+\operatorname {O}\left (x^{8}\right )\right )}{\sqrt {x}}+c_{2} \left (1-\frac {4}{3} x +\operatorname {O}\left (x^{8}\right )\right ) \]

Solution by Mathematica

Time used: 0.010 (sec). Leaf size: 71

AsymptoticDSolveValue[x*(1-x)*D[y[x],{x,2}]+(3/2-2*x)*D[y[x],x]+2*y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to \frac {c_2 \left (\frac {135 x^7}{2048}+\frac {91 x^6}{1024}+\frac {33 x^5}{256}+\frac {27 x^4}{128}+\frac {7 x^3}{16}+\frac {15 x^2}{8}-\frac {9 x}{2}+1\right )}{\sqrt {x}}+c_1 \left (1-\frac {4 x}{3}\right ) \]