50.22.4 problem 1(d)

Internal problem ID [8147]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number : 1(d)
Date solved : Monday, January 27, 2025 at 03:44:47 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} 2 y^{\prime \prime }+x y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 49

Order:=8; 
dsolve(2*diff(y(x),x$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{4} x^{2}+\frac {1}{32} x^{4}-\frac {1}{384} x^{6}\right ) y \left (0\right )+\left (x -\frac {1}{6} x^{3}+\frac {1}{60} x^{5}-\frac {1}{840} x^{7}\right ) y^{\prime }\left (0\right )+O\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[2*D[y[x],{x,2}]+x*D[y[x],x]+y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_2 \left (-\frac {x^7}{840}+\frac {x^5}{60}-\frac {x^3}{6}+x\right )+c_1 \left (-\frac {x^6}{384}+\frac {x^4}{32}-\frac {x^2}{4}+1\right ) \]