50.27.3 problem 3(a)

Internal problem ID [8184]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 10. Systems of First-Order Equations. Section 10.2 Linear Systems. Page 380
Problem number : 3(a)
Date solved : Monday, January 27, 2025 at 03:45:31 PM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }\left (t \right )&=x \left (t \right )+2 y \left (t \right )\\ y^{\prime }\left (t \right )&=3 x \left (t \right )+2 y \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.019 (sec). Leaf size: 35

dsolve([diff(x(t),t)=x(t)+2*y(t),diff(y(t),t)=3*x(t)+2*y(t)],singsol=all)
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{-t} c_{1} +c_{2} {\mathrm e}^{4 t} \\ y &= -{\mathrm e}^{-t} c_{1} +\frac {3 c_{2} {\mathrm e}^{4 t}}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 74

DSolve[{D[x[t],t]==x[t]+2*y[t],D[y[t],t]==3*x[t]+2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to \frac {1}{5} e^{-t} \left (c_1 \left (2 e^{5 t}+3\right )+2 c_2 \left (e^{5 t}-1\right )\right ) \\ y(t)\to \frac {1}{5} e^{-t} \left (3 c_1 \left (e^{5 t}-1\right )+c_2 \left (3 e^{5 t}+2\right )\right ) \\ \end{align*}