50.3.11 problem 2(a)

Internal problem ID [7835]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations. Page 15
Problem number : 2(a)
Date solved : Wednesday, March 05, 2025 at 05:07:27 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }-x y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=3 \end{align*}

Maple. Time used: 0.019 (sec). Leaf size: 15
ode:=diff(y(x),x)-x*y(x) = 0; 
ic:=y(1) = 3; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 3 \,{\mathrm e}^{\frac {\left (x -1\right ) \left (x +1\right )}{2}} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 18
ode=D[y[x],x]-x*y[x]==0; 
ic={y[1]==3}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 3 e^{\frac {1}{2} \left (x^2-1\right )} \]
Sympy. Time used: 0.240 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x) + Derivative(y(x), x),0) 
ics = {y(1): 3} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {3 e^{\frac {x^{2}}{2}}}{e^{\frac {1}{2}}} \]