50.3.14 problem 2(d)

Internal problem ID [7838]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations. Page 15
Problem number : 2(d)
Date solved : Wednesday, March 05, 2025 at 05:07:29 AM
CAS classification : [_linear]

\begin{align*} y^{\prime }-\frac {y}{x}&=x^{2} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=3 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 12
ode:=diff(y(x),x)-y(x)/x = x^2; 
ic:=y(1) = 3; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {\left (x^{2}+5\right ) x}{2} \]
Mathematica. Time used: 0.029 (sec). Leaf size: 15
ode=D[y[x],x]-y[x]/x==x^2; 
ic={y[1]==3}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} x \left (x^2+5\right ) \]
Sympy. Time used: 0.241 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + Derivative(y(x), x) - y(x)/x,0) 
ics = {y(1): 3} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (\frac {x^{2}}{2} + \frac {5}{2}\right ) \]