52.1.5 problem 5. series method

Internal problem ID [8222]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. Section 6.2 SOLUTIONS ABOUT ORDINARY POINTS. EXERCISES 6.2. Page 246
Problem number : 5. series method
Date solved : Monday, January 27, 2025 at 03:46:21 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-y^{\prime }&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 46

Order:=8; 
dsolve(diff(y(x),x$2)-diff(y(x),x)=0,y(x),type='series',x=0);
 
\[ y = y \left (0\right )+\left (x +\frac {1}{2} x^{2}+\frac {1}{6} x^{3}+\frac {1}{24} x^{4}+\frac {1}{120} x^{5}+\frac {1}{720} x^{6}+\frac {1}{5040} x^{7}\right ) y^{\prime }\left (0\right )+O\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 53

AsymptoticDSolveValue[D[y[x],{x,2}]-D[y[x],x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^7}{5040}+\frac {x^6}{720}+\frac {x^5}{120}+\frac {x^4}{24}+\frac {x^3}{6}+\frac {x^2}{2}+x\right )+c_1 \]