52.1.20 problem 18

Internal problem ID [8237]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. Section 6.2 SOLUTIONS ABOUT ORDINARY POINTS. EXERCISES 6.2. Page 246
Problem number : 18
Date solved : Monday, January 27, 2025 at 03:46:38 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 33

Order:=8; 
dsolve((x^2-1)*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}-\frac {1}{8} x^{4}-\frac {1}{16} x^{6}\right ) y \left (0\right )+y^{\prime }\left (0\right ) x +O\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 34

AsymptoticDSolveValue[(x^2-1)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_1 \left (-\frac {x^6}{16}-\frac {x^4}{8}-\frac {x^2}{2}+1\right )+c_2 x \]