52.1.29 problem 26 (a)

Internal problem ID [8246]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. Section 6.2 SOLUTIONS ABOUT ORDINARY POINTS. EXERCISES 6.2. Page 246
Problem number : 26 (a)
Date solved : Monday, January 27, 2025 at 03:46:57 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-y x&=1 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 49

Order:=8; 
dsolve(diff(y(x),x$2)-x*y(x)=1,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{6} x^{3}+\frac {1}{180} x^{6}\right ) y \left (0\right )+\left (x +\frac {1}{12} x^{4}+\frac {1}{504} x^{7}\right ) y^{\prime }\left (0\right )+\frac {x^{2}}{2}+\frac {x^{5}}{40}+O\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 56

AsymptoticDSolveValue[D[y[x],{x,2}]-x*y[x]==1,y[x],{x,0,"8"-1}]
 
\[ y(x)\to \frac {x^5}{40}+\frac {x^2}{2}+c_2 \left (\frac {x^7}{504}+\frac {x^4}{12}+x\right )+c_1 \left (\frac {x^6}{180}+\frac {x^3}{6}+1\right ) \]