50.5.4 problem 1(d)

Internal problem ID [7874]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number : 1(d)
Date solved : Wednesday, March 05, 2025 at 05:13:30 AM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} x \sin \left (\frac {y}{x}\right ) y^{\prime }&=y \sin \left (\frac {y}{x}\right )+x \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 15
ode:=x*sin(y(x)/x)*diff(y(x),x) = y(x)*sin(y(x)/x)+x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (\frac {\pi }{2}+\arcsin \left (\ln \left (x \right )+c_{1} \right )\right ) x \]
Mathematica. Time used: 0.466 (sec). Leaf size: 34
ode=x*Sin[y[x]/x]*D[y[x],x]==y[x]*Sin[y[x]/x]+x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -x \arccos (-\log (x)-c_1) \\ y(x)\to x \arccos (-\log (x)-c_1) \\ \end{align*}
Sympy. Time used: 0.913 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*sin(y(x)/x)*Derivative(y(x), x) - x - y(x)*sin(y(x)/x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = x \left (- \operatorname {acos}{\left (C_{1} - \log {\left (x \right )} \right )} + 2 \pi \right ), \ y{\left (x \right )} = x \operatorname {acos}{\left (C_{1} - \log {\left (x \right )} \right )}\right ] \]