52.2.29 problem 29

Internal problem ID [8280]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. 6.3 SOLUTIONS ABOUT SINGULAR POINTS. EXERCISES 6.3. Page 255
Problem number : 29
Date solved : Monday, January 27, 2025 at 03:47:47 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 52

Order:=8; 
dsolve(x*diff(y(x),x$2)+(1-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (c_{2} \ln \left (x \right )+c_{1} \right ) \left (1+x +\frac {1}{2} x^{2}+\frac {1}{6} x^{3}+\frac {1}{24} x^{4}+\frac {1}{120} x^{5}+\frac {1}{720} x^{6}+\frac {1}{5040} x^{7}+\operatorname {O}\left (x^{8}\right )\right )+\left (-x -\frac {3}{4} x^{2}-\frac {11}{36} x^{3}-\frac {25}{288} x^{4}-\frac {137}{7200} x^{5}-\frac {49}{14400} x^{6}-\frac {121}{235200} x^{7}+\operatorname {O}\left (x^{8}\right )\right ) c_{2} \]

Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 149

AsymptoticDSolveValue[x*D[y[x],{x,2}]+(1-x)*D[y[x],x]-y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^7}{5040}+\frac {x^6}{720}+\frac {x^5}{120}+\frac {x^4}{24}+\frac {x^3}{6}+\frac {x^2}{2}+x+1\right )+c_2 \left (-\frac {121 x^7}{235200}-\frac {49 x^6}{14400}-\frac {137 x^5}{7200}-\frac {25 x^4}{288}-\frac {11 x^3}{36}-\frac {3 x^2}{4}+\left (\frac {x^7}{5040}+\frac {x^6}{720}+\frac {x^5}{120}+\frac {x^4}{24}+\frac {x^3}{6}+\frac {x^2}{2}+x+1\right ) \log (x)-x\right ) \]