50.6.10 problem 1(j)

Internal problem ID [7902]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number : 1(j)
Date solved : Wednesday, March 05, 2025 at 05:16:57 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 27
ode:=y(x)^2+x*y(x)+1+(x^2+x*y(x)+1)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-x^{2}+\operatorname {LambertW}\left (-2 x c_{1} {\mathrm e}^{\left (x -1\right ) \left (x +1\right )}\right )}{x} \]
Mathematica. Time used: 5.402 (sec). Leaf size: 56
ode=(y[x]^2+x*y[x]+1)+(x^2+x*y[x]+1)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -x+\frac {W\left (x \left (-e^{x^2-1+c_1}\right )\right )}{x} \\ y(x)\to -x \\ y(x)\to \frac {W\left (-e^{x^2-1} x\right )}{x}-x \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x) + (x**2 + x*y(x) + 1)*Derivative(y(x), x) + y(x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out