50.7.5 problem 1(e)

Internal problem ID [7909]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number : 1(e)
Date solved : Wednesday, March 05, 2025 at 05:17:11 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} 2 y y^{\prime \prime }&=1+{y^{\prime }}^{2} \end{align*}

Maple. Time used: 0.029 (sec). Leaf size: 22
ode:=2*y(x)*diff(diff(y(x),x),x) = 1+diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (c_{1}^{2}+1\right ) x^{2}}{4 c_{2}}+c_{1} x +c_{2} \]
Mathematica. Time used: 0.026 (sec). Leaf size: 34
ode=2*y[x]*D[y[x],{x,2}]==1+(D[y[x],x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\left (1+c_1{}^2\right ) x^2}{4 c_2}+c_1 x+c_2 \\ y(x)\to \text {Indeterminate} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(2*y(x)*Derivative(y(x), (x, 2)) - 1) + Derivative(y(x), x) cannot be solved by the factorable group method