52.5.9 problem 39

Internal problem ID [8332]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 7 THE LAPLACE TRANSFORM. 7.2.2 TRANSFORMS OF DERIVATIVES Page 289
Problem number : 39
Date solved : Monday, January 27, 2025 at 03:49:08 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y&={\mathrm e}^{-t} \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0\\ y^{\prime \prime }\left (0\right )&=1 \end{align*}

Solution by Maple

Time used: 0.743 (sec). Leaf size: 25

dsolve([2*diff(y(t),t$3)+3*diff(y(t),t$2)-3*diff(y(t),t)-2*y(t)=exp(-t),y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 1],y(t), singsol=all)
 
\[ y = \frac {7 \cosh \left (t \right )}{9}-\frac {2 \sinh \left (t \right )}{9}+\frac {{\mathrm e}^{-2 t}}{9}-\frac {8 \,{\mathrm e}^{-\frac {t}{2}}}{9} \]

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 37

DSolve[{2*D[ y[t],{t,3}]+3*D[y[t],{t,2}]-3*D[y[t],t]-2*y[t]==Exp[-t],{y[0]==0,Derivative[1][y][0] ==0,Derivative[2][y][0] ==1}},y[t],t,IncludeSingularSolutions -> True]
 
\[ y(t)\to \frac {1}{18} e^{-2 t} \left (9 e^t-16 e^{3 t/2}+5 e^{3 t}+2\right ) \]