52.6.6 problem 26

Internal problem ID [8341]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 7 THE LAPLACE TRANSFORM. 7.3.1 TRANSLATION ON THE s-AXIS. Page 297
Problem number : 26
Date solved : Monday, January 27, 2025 at 03:49:14 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=t^{3} \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 0.620 (sec). Leaf size: 30

dsolve([diff(y(t),t$2)-4*diff(y(t),t)+4*y(t)=t^3,y(0) = 1, D(y)(0) = 0],y(t), singsol=all)
 
\[ y = \frac {\left (-13 t +2\right ) {\mathrm e}^{2 t}}{8}+\frac {t^{3}}{4}+\frac {3 t^{2}}{4}+\frac {9 t}{8}+\frac {3}{4} \]

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 35

DSolve[{D[y[t],{t,2}]-4*D[y[t],t]+4*y[t]==t^3,{y[0]==1,Derivative[1][y][0] ==0}},y[t],t,IncludeSingularSolutions -> True]
 
\[ y(t)\to \frac {1}{8} \left (2 t^3+6 t^2+9 t+e^{2 t} (2-13 t)+6\right ) \]