52.6.15 problem 65

Internal problem ID [8350]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 7 THE LAPLACE TRANSFORM. 7.3.1 TRANSLATION ON THE s-AXIS. Page 297
Problem number : 65
Date solved : Monday, January 27, 2025 at 03:49:21 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 1.085 (sec). Leaf size: 29

dsolve([diff(y(t),t)+y(t)=piecewise(0<=t and t<1,t,t>=1,0),y(0) = 0],y(t), singsol=all)
 
\[ y = \left \{\begin {array}{cc} -1+{\mathrm e}^{-t}+t & t <1 \\ 1+{\mathrm e}^{-1} & t =1 \\ {\mathrm e}^{-t} & 1<t \end {array}\right . \]

Solution by Mathematica

Time used: 0.070 (sec). Leaf size: 32

DSolve[{D[y[t],t]+y[t]==Piecewise[{{t,0<=t<1},{0,t>=1}}],{y[0]==0}},y[t],t,IncludeSingularSolutions -> True]
 
\[ y(t)\to \begin {array}{cc} \{ & \begin {array}{cc} 0 & t\leq 0 \\ t+e^{-t}-1 & 0<t\leq 1 \\ e^{-t} & \text {True} \\ \end {array} \\ \end {array} \]