50.13.5 problem 5

Internal problem ID [8020]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number : 5
Date solved : Wednesday, March 05, 2025 at 05:23:24 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)+3*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x} \left (c_3 \,x^{2}+c_{2} x +c_{1} \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 23
ode=D[y[x],{x,3}]+3*D[y[x],{x,2}]+3*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} (x (c_3 x+c_2)+c_1) \]
Sympy. Time used: 0.164 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + 3*Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + C_{3} x\right )\right ) e^{- x} \]