50.13.12 problem 12

Internal problem ID [8027]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number : 12
Date solved : Wednesday, March 05, 2025 at 05:23:28 AM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 28
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+2*diff(diff(diff(y(x),x),x),x)-2*diff(diff(y(x),x),x)-6*diff(y(x),x)+5*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-2 x} \left (\left (c_{2} x +c_{1} \right ) {\mathrm e}^{3 x}+c_3 \sin \left (x \right )+c_4 \cos \left (x \right )\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 35
ode=D[y[x],{x,4}]+2*D[y[x],{x,3}]-2*D[y[x],{x,2}]-6*D[y[x],x]+5*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-2 x} \left (e^{3 x} (c_4 x+c_3)+c_2 \cos (x)+c_1 \sin (x)\right ) \]
Sympy. Time used: 0.214 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(5*y(x) - 6*Derivative(y(x), x) - 2*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{x} + \left (C_{3} \sin {\left (x \right )} + C_{4} \cos {\left (x \right )}\right ) e^{- 2 x} \]