52.10.23 problem 24

Internal problem ID [8417]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS. EXERCISES 8.2. Page 346
Problem number : 24
Date solved : Monday, January 27, 2025 at 04:00:15 PM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }\left (t \right )&=3 x \left (t \right )+2 y+4 z \left (t \right )\\ y^{\prime }&=2 x \left (t \right )+2 z \left (t \right )\\ z^{\prime }\left (t \right )&=4 x \left (t \right )+2 y+3 z \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.054 (sec). Leaf size: 66

dsolve([diff(x(t),t)=3*x(t)+2*y(t)+4*z(t),diff(y(t),t)=2*x(t)+2*z(t),diff(z(t),t)=4*x(t)+2*y(t)+3*z(t)],singsol=all)
 
\begin{align*} x \left (t \right ) &= 2 c_{2} {\mathrm e}^{-t}+2 c_3 \,{\mathrm e}^{8 t}+{\mathrm e}^{-t} c_{1} \\ y &= c_{2} {\mathrm e}^{-t}+c_3 \,{\mathrm e}^{8 t} \\ z \left (t \right ) &= -\frac {5 c_{2} {\mathrm e}^{-t}}{2}+2 c_3 \,{\mathrm e}^{8 t}-{\mathrm e}^{-t} c_{1} \\ \end{align*}

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 135

DSolve[{D[x[t],t]==3*x[t]+2*y[t]+4*z[t],D[y[t],t]==2*x[t]+2*z[t],D[z[t],t]==4*x[t]+2*y[t]+3*z[t]},{x[t],y[t],z[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to \frac {1}{9} e^{-t} \left (c_1 \left (4 e^{9 t}+5\right )+2 (c_2+2 c_3) \left (e^{9 t}-1\right )\right ) \\ y(t)\to \frac {1}{9} e^{-t} \left (2 c_1 \left (e^{9 t}-1\right )+c_2 \left (e^{9 t}+8\right )+2 c_3 \left (e^{9 t}-1\right )\right ) \\ z(t)\to \frac {1}{9} e^{-t} \left (4 c_1 \left (e^{9 t}-1\right )+2 c_2 \left (e^{9 t}-1\right )+c_3 \left (4 e^{9 t}+5\right )\right ) \\ \end{align*}