50.14.9 problem 2(a)

Internal problem ID [8047]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number : 2(a)
Date solved : Wednesday, March 05, 2025 at 05:24:42 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+9 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=2 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)+9*y(x) = 0; 
ic:=y(0) = 1, D(y)(0) = 2; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {2 \sin \left (3 x \right )}{3}+\cos \left (3 x \right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 18
ode=D[y[x],{x,2}]+9*y[x]==0; 
ic={y[0]==1,Derivative[1][y][0] ==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {2}{3} \sin (3 x)+\cos (3 x) \]
Sympy. Time used: 0.070 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 2} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {2 \sin {\left (3 x \right )}}{3} + \cos {\left (3 x \right )} \]