53.1.15 problem 15

Internal problem ID [8449]
Book : Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section : CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309
Problem number : 15
Date solved : Monday, January 27, 2025 at 04:01:30 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2}&=4 x^{2} y^{2} \end{align*}

Solution by Maple

Time used: 0.125 (sec). Leaf size: 251

dsolve((x^2+y(x)^2)^2*diff(y(x),x)^2=4*x^2*y(x)^2,y(x), singsol=all)
 
\begin{align*} y &= \frac {1-\sqrt {4 c_{1}^{2} x^{2}+1}}{2 c_{1}} \\ y &= \frac {1+\sqrt {4 c_{1}^{2} x^{2}+1}}{2 c_{1}} \\ y &= -\frac {2 \left (c_{1} x^{2}-\frac {\left (4+4 \sqrt {4 c_{1}^{3} x^{6}+1}\right )^{{2}/{3}}}{4}\right )}{\sqrt {c_{1}}\, \left (4+4 \sqrt {4 c_{1}^{3} x^{6}+1}\right )^{{1}/{3}}} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (4+4 \sqrt {4 c_{1}^{3} x^{6}+1}\right )^{{1}/{3}}}{4 \sqrt {c_{1}}}-\frac {\sqrt {c_{1}}\, x^{2} \left (i \sqrt {3}-1\right )}{\left (4+4 \sqrt {4 c_{1}^{3} x^{6}+1}\right )^{{1}/{3}}} \\ y &= \frac {4 i \sqrt {3}\, c_{1} x^{2}+i \left (4+4 \sqrt {4 c_{1}^{3} x^{6}+1}\right )^{{2}/{3}} \sqrt {3}+4 c_{1} x^{2}-\left (4+4 \sqrt {4 c_{1}^{3} x^{6}+1}\right )^{{2}/{3}}}{4 \left (4+4 \sqrt {4 c_{1}^{3} x^{6}+1}\right )^{{1}/{3}} \sqrt {c_{1}}} \\ \end{align*}

Solution by Mathematica

Time used: 16.301 (sec). Leaf size: 345

DSolve[(x^2+y[x]^2)^2*(D[y[x],x])^2==4*x^2*y[x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{2} \left (-\sqrt {4 x^2+e^{2 c_1}}-e^{c_1}\right ) \\ y(x)\to \frac {1}{2} \left (\sqrt {4 x^2+e^{2 c_1}}-e^{c_1}\right ) \\ y(x)\to \frac {\sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}}{\sqrt [3]{2}}-\frac {\sqrt [3]{2} x^2}{\sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}} \\ y(x)\to \frac {i 2^{2/3} \left (\sqrt {3}+i\right ) \left (\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}\right ){}^{2/3}+\sqrt [3]{2} \left (2+2 i \sqrt {3}\right ) x^2}{4 \sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}} \\ y(x)\to \frac {\left (1-i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}} \\ y(x)\to 0 \\ \end{align*}