50.17.22 problem 5 solved using series

Internal problem ID [8093]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number : 5 solved using series
Date solved : Wednesday, March 05, 2025 at 05:29:44 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }&=x -y \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 20
Order:=8; 
ode:=diff(y(x),x) = x-y(x); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(x),type='series',x=0);
 
\[ y = \frac {1}{2} x^{2}-\frac {1}{6} x^{3}+\frac {1}{24} x^{4}-\frac {1}{120} x^{5}+\frac {1}{720} x^{6}-\frac {1}{5040} x^{7}+\operatorname {O}\left (x^{8}\right ) \]
Mathematica. Time used: 0.019 (sec). Leaf size: 46
ode=D[y[x],x]==x-y[x]; 
ic={y[0]==0}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
 
\[ y(x)\to -\frac {x^7}{5040}+\frac {x^6}{720}-\frac {x^5}{120}+\frac {x^4}{24}-\frac {x^3}{6}+\frac {x^2}{2} \]
Sympy. Time used: 0.660 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + y(x) + Derivative(y(x), x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=8)
 
\[ y{\left (x \right )} = \frac {x^{2}}{2} - \frac {x^{3}}{6} + \frac {x^{4}}{24} - \frac {x^{5}}{120} + \frac {x^{6}}{720} - \frac {x^{7}}{5040} + O\left (x^{8}\right ) \]