53.3.25 problem 28

Internal problem ID [8487]
Book : Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section : CHAPTER 16. Nonlinear equations. Section 99. Clairaut equation. EXERCISES Page 320
Problem number : 28
Date solved : Monday, January 27, 2025 at 04:07:14 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} {y^{\prime }}^{2}+3 x y^{\prime }-y&=0 \end{align*}

Solution by Maple

Time used: 0.033 (sec). Leaf size: 85

dsolve(diff(y(x),x)^2+3*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
 
\begin{align*} \frac {c_{1}}{\left (-6 x -2 \sqrt {9 x^{2}+4 y}\right )^{{3}/{2}}}+\frac {2 x}{5}-\frac {\sqrt {9 x^{2}+4 y}}{5} &= 0 \\ \frac {c_{1}}{\left (-6 x +2 \sqrt {9 x^{2}+4 y}\right )^{{3}/{2}}}+\frac {2 x}{5}+\frac {\sqrt {9 x^{2}+4 y}}{5} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 14.559 (sec). Leaf size: 776

DSolve[(D[y[x],x])^2+3*x*D[y[x],x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {Root}\left [16 \text {$\#$1}^5+40 \text {$\#$1}^4 x^2+25 \text {$\#$1}^3 x^4+160 \text {$\#$1}^2 e^{5 c_1} x+360 \text {$\#$1} e^{5 c_1} x^3+216 e^{5 c_1} x^5-64 e^{10 c_1}\&,1\right ] \\ y(x)\to \text {Root}\left [16 \text {$\#$1}^5+40 \text {$\#$1}^4 x^2+25 \text {$\#$1}^3 x^4+160 \text {$\#$1}^2 e^{5 c_1} x+360 \text {$\#$1} e^{5 c_1} x^3+216 e^{5 c_1} x^5-64 e^{10 c_1}\&,2\right ] \\ y(x)\to \text {Root}\left [16 \text {$\#$1}^5+40 \text {$\#$1}^4 x^2+25 \text {$\#$1}^3 x^4+160 \text {$\#$1}^2 e^{5 c_1} x+360 \text {$\#$1} e^{5 c_1} x^3+216 e^{5 c_1} x^5-64 e^{10 c_1}\&,3\right ] \\ y(x)\to \text {Root}\left [16 \text {$\#$1}^5+40 \text {$\#$1}^4 x^2+25 \text {$\#$1}^3 x^4+160 \text {$\#$1}^2 e^{5 c_1} x+360 \text {$\#$1} e^{5 c_1} x^3+216 e^{5 c_1} x^5-64 e^{10 c_1}\&,4\right ] \\ y(x)\to \text {Root}\left [16 \text {$\#$1}^5+40 \text {$\#$1}^4 x^2+25 \text {$\#$1}^3 x^4+160 \text {$\#$1}^2 e^{5 c_1} x+360 \text {$\#$1} e^{5 c_1} x^3+216 e^{5 c_1} x^5-64 e^{10 c_1}\&,5\right ] \\ y(x)\to \text {Root}\left [1024 \text {$\#$1}^5+2560 \text {$\#$1}^4 x^2+1600 \text {$\#$1}^3 x^4-160 \text {$\#$1}^2 e^{5 c_1} x-360 \text {$\#$1} e^{5 c_1} x^3-216 e^{5 c_1} x^5-e^{10 c_1}\&,1\right ] \\ y(x)\to \text {Root}\left [1024 \text {$\#$1}^5+2560 \text {$\#$1}^4 x^2+1600 \text {$\#$1}^3 x^4-160 \text {$\#$1}^2 e^{5 c_1} x-360 \text {$\#$1} e^{5 c_1} x^3-216 e^{5 c_1} x^5-e^{10 c_1}\&,2\right ] \\ y(x)\to \text {Root}\left [1024 \text {$\#$1}^5+2560 \text {$\#$1}^4 x^2+1600 \text {$\#$1}^3 x^4-160 \text {$\#$1}^2 e^{5 c_1} x-360 \text {$\#$1} e^{5 c_1} x^3-216 e^{5 c_1} x^5-e^{10 c_1}\&,3\right ] \\ y(x)\to \text {Root}\left [1024 \text {$\#$1}^5+2560 \text {$\#$1}^4 x^2+1600 \text {$\#$1}^3 x^4-160 \text {$\#$1}^2 e^{5 c_1} x-360 \text {$\#$1} e^{5 c_1} x^3-216 e^{5 c_1} x^5-e^{10 c_1}\&,4\right ] \\ y(x)\to \text {Root}\left [1024 \text {$\#$1}^5+2560 \text {$\#$1}^4 x^2+1600 \text {$\#$1}^3 x^4-160 \text {$\#$1}^2 e^{5 c_1} x-360 \text {$\#$1} e^{5 c_1} x^3-216 e^{5 c_1} x^5-e^{10 c_1}\&,5\right ] \\ y(x)\to 0 \\ \end{align*}