Internal
problem
ID
[8139]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
4.
Power
Series
Solutions
and
Special
Functions.
Section
4.6.
Gauss
Hypergeometric
Equation.
Page
187
Problem
number
:
2(b)
Date
solved
:
Wednesday, March 05, 2025 at 05:30:39 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
Using series method with expansion around
Order:=8; ode:=(2*x^2+2*x)*diff(diff(y(x),x),x)+(1+5*x)*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(2*x^2+2*x)*D[y[x],{x,2}]+(1+5*x)*D[y[x],x]+y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((5*x + 1)*Derivative(y(x), x) + (2*x**2 + 2*x)*Derivative(y(x), (x, 2)) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)