54.3.2 problem 2

Internal problem ID [8558]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 17. Power series solutions. 17.5. Solutions Near an Ordinary Point. Exercises page 355
Problem number : 2
Date solved : Monday, January 27, 2025 at 04:16:22 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-9 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 49

Order:=8; 
dsolve(diff(y(x),x$2)-9*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {9}{2} x^{2}+\frac {27}{8} x^{4}+\frac {81}{80} x^{6}\right ) y \left (0\right )+\left (x +\frac {3}{2} x^{3}+\frac {27}{40} x^{5}+\frac {81}{560} x^{7}\right ) y^{\prime }\left (0\right )+O\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[D[y[x],{x,2}]-9*y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_2 \left (\frac {81 x^7}{560}+\frac {27 x^5}{40}+\frac {3 x^3}{2}+x\right )+c_1 \left (\frac {81 x^6}{80}+\frac {27 x^4}{8}+\frac {9 x^2}{2}+1\right ) \]