54.3.7 problem 7

Internal problem ID [8563]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 17. Power series solutions. 17.5. Solutions Near an Ordinary Point. Exercises page 355
Problem number : 7
Date solved : Monday, January 27, 2025 at 04:16:27 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+10 x y^{\prime }+20 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 49

Order:=8; 
dsolve((1+x^2)*diff(y(x),x$2)+10*x*diff(y(x),x)+20*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (-84 x^{6}+35 x^{4}-10 x^{2}+1\right ) y \left (0\right )+\left (-30 x^{7}+14 x^{5}-5 x^{3}+x \right ) y^{\prime }\left (0\right )+O\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 44

AsymptoticDSolveValue[(1+x^2)*D[y[x],{x,2}]+10*x*D[y[x],x]+20*y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_2 \left (-30 x^7+14 x^5-5 x^3+x\right )+c_1 \left (-84 x^6+35 x^4-10 x^2+1\right ) \]