Internal
problem
ID
[8183]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
10.
Systems
of
First-Order
Equations.
Section
10.2
Linear
Systems.
Page
380
Problem
number
:
2(c)
Date
solved
:
Wednesday, March 05, 2025 at 05:31:41 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = x(t)+3*y(t), diff(y(t),t) = 3*x(t)+y(t)]; ic:=x(0) = 5y(0) = 1; dsolve([ode,ic]);
ode={D[x[t],t]==x[t]+3*y[t],D[y[t],t]==3*x[t]+y[t]}; ic={x[0]==5,y[0]==1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-x(t) - 3*y(t) + Derivative(x(t), t),0),Eq(-3*x(t) - y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)