50.28.5 problem 1(e)

Internal problem ID [8192]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number : 1(e)
Date solved : Wednesday, March 05, 2025 at 05:31:50 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=2 x \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=3 y \left (t \right ) \end{align*}

Maple. Time used: 0.014 (sec). Leaf size: 19
ode:=[diff(x(t),t) = 2*x(t), diff(y(t),t) = 3*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_{2} {\mathrm e}^{2 t} \\ y &= c_{1} {\mathrm e}^{3 t} \\ \end{align*}
Mathematica. Time used: 0.043 (sec). Leaf size: 65
ode={D[x[t],t]==2*x[t],D[y[t],t]==3*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to c_1 e^{2 t} \\ y(t)\to c_2 e^{3 t} \\ x(t)\to c_1 e^{2 t} \\ y(t)\to 0 \\ x(t)\to 0 \\ y(t)\to c_2 e^{3 t} \\ x(t)\to 0 \\ y(t)\to 0 \\ \end{align*}
Sympy. Time used: 0.059 (sec). Leaf size: 17
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-2*x(t) + Derivative(x(t), t),0),Eq(-3*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = C_{1} e^{2 t}, \ y{\left (t \right )} = C_{2} e^{3 t}\right ] \]