54.3.22 problem 22

Internal problem ID [8578]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 17. Power series solutions. 17.5. Solutions Near an Ordinary Point. Exercises page 355
Problem number : 22
Date solved : Monday, January 27, 2025 at 04:16:42 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+4\right ) y^{\prime \prime }+3 x y^{\prime }-8 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 37

Order:=8; 
dsolve((x^2+4)*diff(y(x),x$2)+3*x*diff(y(x),x)-8*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (x^{2}+1\right ) y \left (0\right )+\left (x +\frac {5}{24} x^{3}-\frac {7}{384} x^{5}+\frac {3}{1024} x^{7}\right ) y^{\prime }\left (0\right )+O\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 38

AsymptoticDSolveValue[(x^2+4)*D[y[x],{x,2}]+3*x*D[y[x],x]-8*y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_1 \left (x^2+1\right )+c_2 \left (\frac {3 x^7}{1024}-\frac {7 x^5}{384}+\frac {5 x^3}{24}+x\right ) \]