Internal
problem
ID
[8196]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
10.
Systems
of
First-Order
Equations.
Section
10.3
Homogeneous
Linear
Systems
with
Constant
Coefficients.
Page
387
Problem
number
:
5(b)
Date
solved
:
Wednesday, March 05, 2025 at 05:31:54 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)+y(t)-5*t+2, diff(y(t),t) = 4*x(t)-2*y(t)-8*t-8]; dsolve(ode);
ode={D[x[t],t]==x[t]+y[t]-5*t+2,D[y[t],t]==4*x[t]-2*y[t]-8*t-8}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(5*t - x(t) - y(t) + Derivative(x(t), t) - 2,0),Eq(8*t - 4*x(t) + 2*y(t) + Derivative(y(t), t) + 8,0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)