54.5.9 problem 9

Internal problem ID [8624]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 18. Power series solutions. 18.6. Indicial Equation with Equal Roots. Exercises page 373
Problem number : 9
Date solved : Monday, January 27, 2025 at 04:17:42 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x \left (x -2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }-2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 2 \end{align*}

Solution by Maple

Time used: 0.020 (sec). Leaf size: 42

Order:=8; 
dsolve(x*(x-2)*diff(y(x),x$2)+2*(x-1)*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=2);
 
\[ y = \left (\ln \left (x -2\right ) c_{2} +c_{1} \right ) \left (1+\left (x -2\right )+\operatorname {O}\left (\left (x -2\right )^{8}\right )\right )+\left (-\frac {5}{2} \left (x -2\right )-\frac {3}{8} \left (x -2\right )^{2}+\frac {1}{12} \left (x -2\right )^{3}-\frac {5}{192} \left (x -2\right )^{4}+\frac {3}{320} \left (x -2\right )^{5}-\frac {7}{1920} \left (x -2\right )^{6}+\frac {1}{672} \left (x -2\right )^{7}+\operatorname {O}\left (\left (x -2\right )^{8}\right )\right ) c_{2} \]

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 90

AsymptoticDSolveValue[x*(x-2)*D[y[x],{x,2}]+2*(x-1)*D[y[x],x]-2*y[x]==0,y[x],{x,2,"8"-1}]
 
\[ y(x)\to c_1 (x-1)+c_2 \left (\frac {1}{672} (x-2)^7-\frac {7 (x-2)^6}{1920}+\frac {3}{320} (x-2)^5-\frac {5}{192} (x-2)^4+\frac {1}{12} (x-2)^3-\frac {3}{8} (x-2)^2-2 (x-2)+\frac {2-x}{2}+(x-1) \log (x-2)\right ) \]