54.5.13 problem 12

Internal problem ID [8628]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 18. Power series solutions. 18.6. Indicial Equation with Equal Roots. Exercises page 373
Problem number : 12
Date solved : Monday, January 27, 2025 at 04:17:47 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

Order:=8; 
dsolve(x*diff(y(x),x$2)+(1-x^2)*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (c_{2} \ln \left (x \right )+c_{1} \right ) \left (1+\frac {1}{4} x^{2}+\frac {3}{64} x^{4}+\frac {5}{768} x^{6}+\operatorname {O}\left (x^{8}\right )\right )+\left (-\frac {1}{128} x^{4}-\frac {1}{512} x^{6}+\operatorname {O}\left (x^{8}\right )\right ) c_{2} \]

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 74

AsymptoticDSolveValue[x*D[y[x],{x,2}]+(1-x^2)*D[y[x],x]-x*y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_1 \left (\frac {5 x^6}{768}+\frac {3 x^4}{64}+\frac {x^2}{4}+1\right )+c_2 \left (-\frac {x^6}{512}-\frac {x^4}{128}+\left (\frac {5 x^6}{768}+\frac {3 x^4}{64}+\frac {x^2}{4}+1\right ) \log (x)\right ) \]