54.9.26 problem 27

Internal problem ID [8696]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 18. Power series solutions. Miscellaneous Exercises. page 394
Problem number : 27
Date solved : Monday, January 27, 2025 at 04:19:28 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y \left (1+x \right )&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 56

Order:=8; 
dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*(1+x)*y(x)=0,y(x),type='series',x=0);
 
\[ y = x^{2} \left (\left (c_{2} \ln \left (x \right )+c_{1} \right ) \left (1-4 x +4 x^{2}-\frac {16}{9} x^{3}+\frac {4}{9} x^{4}-\frac {16}{225} x^{5}+\frac {16}{2025} x^{6}-\frac {64}{99225} x^{7}+\operatorname {O}\left (x^{8}\right )\right )+\left (8 x -12 x^{2}+\frac {176}{27} x^{3}-\frac {50}{27} x^{4}+\frac {1096}{3375} x^{5}-\frac {392}{10125} x^{6}+\frac {3872}{1157625} x^{7}+\operatorname {O}\left (x^{8}\right )\right ) c_{2} \right ) \]

Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 158

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+4*(1+x)*y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_1 \left (-\frac {64 x^7}{99225}+\frac {16 x^6}{2025}-\frac {16 x^5}{225}+\frac {4 x^4}{9}-\frac {16 x^3}{9}+4 x^2-4 x+1\right ) x^2+c_2 \left (\left (\frac {3872 x^7}{1157625}-\frac {392 x^6}{10125}+\frac {1096 x^5}{3375}-\frac {50 x^4}{27}+\frac {176 x^3}{27}-12 x^2+8 x\right ) x^2+\left (-\frac {64 x^7}{99225}+\frac {16 x^6}{2025}-\frac {16 x^5}{225}+\frac {4 x^4}{9}-\frac {16 x^3}{9}+4 x^2-4 x+1\right ) x^2 \log (x)\right ) \]