4.29.4 Problems 301 to 400

Table 4.1209: Second order, Linear, non-homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

Sympy

12886

\[ {} y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

12887

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = x^{2}-x -1 \]

12889

\[ {} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

12890

\[ {} \sin \left (x \right ) y^{\prime \prime }+2 y^{\prime } \cos \left (x \right )+3 \sin \left (x \right ) y = {\mathrm e}^{x} \]

12893

\[ {} x y^{\prime \prime }+2 y^{\prime }-x y = 2 \,{\mathrm e}^{x} \]

12894

\[ {} y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+{\mathrm e}^{2 x} y = {\mathrm e}^{4 x} \]

12897

\[ {} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

12898

\[ {} x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-8 x^{3} y = 4 x^{3} {\mathrm e}^{-x^{2}} \]

12906

\[ {} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

12911

\[ {} y^{\prime \prime }+x y^{\prime } = x \]

12921

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = x \]

12922

\[ {} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

12934

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

12942

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

12964

\[ {} x^{\prime }+x^{\prime \prime } t = 1 \]

12993

\[ {} \frac {x^{\prime }+x^{\prime \prime } t}{t} = -2 \]

13087

\[ {} t^{2} x^{\prime \prime }-2 x = t^{3} \]

13090

\[ {} x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

13091

\[ {} t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

13444

\[ {} x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

13445

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 1 \]

13446

\[ {} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = \left (x +2\right )^{2} \]

13447

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

13448

\[ {} x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x} \]

13449

\[ {} \left (2 x +1\right ) \left (1+x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2} \]

13450

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3} \]

13465

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6 \]

13466

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

13467

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

13468

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 x \ln \left (x \right ) \]

13469

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

13474

\[ {} x^{2} y^{\prime \prime }-2 y = 4 x -8 \]

13475

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2} \]

13476

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2} \]

13477

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

13478

\[ {} x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]

13714

\[ {} t^{2} x^{\prime \prime }-2 x = t^{3} \]

13716

\[ {} \left (\tan \left (x \right )^{2}-1\right ) y^{\prime \prime }-4 \tan \left (x \right )^{3} y^{\prime }+2 y \sec \left (x \right )^{4} = \left (\tan \left (x \right )^{2}-1\right ) \left (1-2 \sin \left (x \right )^{2}\right ) \]

13825

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

13847

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

13852

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 2 \cos \left (\ln \left (1+x \right )\right ) \]

13891

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

13893

\[ {} x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

13905

\[ {} \left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]

13908

\[ {} x y^{\prime \prime }+2 x^{2} y^{\prime }+\sin \left (x \right ) y = \sinh \left (x \right ) \]

13909

\[ {} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+7 y = 1 \]

13910

\[ {} y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]

13916

\[ {} y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

13917

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x \]

13920

\[ {} y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

13923

\[ {} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = \cos \left (x \right ) \]

13924

\[ {} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

13925

\[ {} x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

13936

\[ {} \frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (3 x +1\right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

13938

\[ {} y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

13939

\[ {} y^{\prime \prime }+\left (5+2 x \right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

14008

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

14009

\[ {} t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y = \ln \left (t \right ) \]

14010

\[ {} y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t \]

14011

\[ {} y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]

14012

\[ {} t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4} \]

14055

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

14074

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]

14151

\[ {} x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x} \]

14153

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right ) \]

14403

\[ {} x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

14404

\[ {} x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

14405

\[ {} \sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]

14406

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]

14416

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -3 x -\frac {3}{x} \]

14906

\[ {} x^{2} y^{\prime \prime } = 1 \]

14928

\[ {} x y^{\prime \prime }+2 = \sqrt {x} \]

15130

\[ {} x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

15158

\[ {} x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

15164

\[ {} x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

15170

\[ {} x y^{\prime \prime }+2 y^{\prime } = 6 \]

15183

\[ {} y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]

15209

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

15210

\[ {} x^{2} y^{\prime \prime }-20 y = 27 x^{5} \]

15211

\[ {} x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

15212

\[ {} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

15340

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 10 x +12 \]

15346

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 1 \]

15347

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

15348

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 22 x +24 \]

15349

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x^{2} \]

15350

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x \]

15351

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 1 \]

15352

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 4 x^{2}+2 x +3 \]

15426

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = \frac {5}{x^{3}} \]

15427

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {50}{x^{3}} \]

15428

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

15429

\[ {} x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

15430

\[ {} 3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 4 x^{3} \]

15431

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = \frac {10}{x} \]

15432

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 6 x^{3} \]

15433

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 64 \ln \left (x \right ) x^{2} \]

15434

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 \sqrt {x} \]

15440

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

15441

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 12 x^{3} \]