52.5.2 problem 32

Internal problem ID [8325]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 7 THE LAPLACE TRANSFORM. 7.2.2 TRANSFORMS OF DERIVATIVES Page 289
Problem number : 32
Date solved : Wednesday, March 05, 2025 at 05:35:13 AM
CAS classification : [_quadrature]

\begin{align*} 2 y^{\prime }+y&=0 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=-3 \end{align*}

Maple. Time used: 0.590 (sec). Leaf size: 10
ode:=2*diff(y(t),t)+y(t) = 0; 
ic:=y(0) = -3; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = -3 \,{\mathrm e}^{-\frac {t}{2}} \]
Mathematica. Time used: 0.023 (sec). Leaf size: 14
ode=2*D[y[t],t]+y[t]==0; 
ic={y[0]==-3}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to -3 e^{-t/2} \]
Sympy. Time used: 0.146 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t) + 2*Derivative(y(t), t),0) 
ics = {y(0): -3} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - 3 e^{- \frac {t}{2}} \]