52.5.4 problem 34

Internal problem ID [8327]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 7 THE LAPLACE TRANSFORM. 7.2.2 TRANSFORMS OF DERIVATIVES Page 289
Problem number : 34
Date solved : Wednesday, March 05, 2025 at 05:35:15 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }-y&=2 \cos \left (5 t \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.708 (sec). Leaf size: 21
ode:=diff(y(t),t)-y(t) = 2*cos(5*t); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = \frac {{\mathrm e}^{t}}{13}-\frac {\cos \left (5 t \right )}{13}+\frac {5 \sin \left (5 t \right )}{13} \]
Mathematica. Time used: 0.098 (sec). Leaf size: 25
ode=D[y[t],t]-y[t]==2*Cos[5*t]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{13} \left (e^t+5 \sin (5 t)-\cos (5 t)\right ) \]
Sympy. Time used: 0.149 (sec). Leaf size: 22
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t) - 2*cos(5*t) + Derivative(y(t), t),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {e^{t}}{13} + \frac {5 \sin {\left (5 t \right )}}{13} - \frac {\cos {\left (5 t \right )}}{13} \]