52.5.7 problem 37

Internal problem ID [8330]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 7 THE LAPLACE TRANSFORM. 7.2.2 TRANSFORMS OF DERIVATIVES Page 289
Problem number : 37
Date solved : Wednesday, March 05, 2025 at 05:35:18 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=10\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.725 (sec). Leaf size: 24
ode:=diff(diff(y(t),t),t)+y(t) = 2^(1/2)*sin(2^(1/2)*t); 
ic:=y(0) = 10, D(y)(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = -\sqrt {2}\, \sin \left (\sqrt {2}\, t \right )+10 \cos \left (t \right )+2 \sin \left (t \right ) \]
Mathematica. Time used: 0.023 (sec). Leaf size: 29
ode=D[y[t],{t,2}]+y[t]==Sqrt[2]*Sin[Sqrt[2]*t]; 
ic={y[0]==10,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to 2 \sin (t)-\sqrt {2} \sin \left (\sqrt {2} t\right )+10 \cos (t) \]
Sympy. Time used: 0.100 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t) - sqrt(2)*sin(sqrt(2)*t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 10, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = 2 \sin {\left (t \right )} - \sqrt {2} \sin {\left (\sqrt {2} t \right )} + 10 \cos {\left (t \right )} \]