Internal
problem
ID
[8330]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
7
THE
LAPLACE
TRANSFORM.
7.2.2
TRANSFORMS
OF
DERIVATIVES
Page
289
Problem
number
:
37
Date
solved
:
Wednesday, March 05, 2025 at 05:35:18 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+y(t) = 2^(1/2)*sin(2^(1/2)*t); ic:=y(0) = 10, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+y[t]==Sqrt[2]*Sin[Sqrt[2]*t]; ic={y[0]==10,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(y(t) - sqrt(2)*sin(sqrt(2)*t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 10, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)